<form id="dlljd"></form>
        <address id="dlljd"><address id="dlljd"><listing id="dlljd"></listing></address></address>

        <em id="dlljd"><form id="dlljd"></form></em>

          <address id="dlljd"></address>
            <noframes id="dlljd">

              聯系我們 - 廣告服務 - 聯系電話:
              您的當前位置: > 關注 > > 正文

              天天速讀:步進電機概念、原理

              來源:CSDN 時間:2023-01-30 08:52:04


              (資料圖片僅供參考)

              1、步進電機是一種將電脈沖信號轉換成相應角位移或線位移的電動機。每輸入一個脈沖信號,轉子就轉動一個角度或前進一步,其輸出的角位移或線位移與輸入的脈沖數成正比,轉速與脈沖頻率成正比。因此,步進電動機又稱脈沖電動機。

              2、步進電機又稱為脈沖電機,基于最基本的電磁鐵原理,它是一種可以自由回轉的電磁鐵,其動作原理是依靠氣隙磁導的變化來產生電磁轉矩。其原始模型是起源于1830年至1860年間。1870年前后開始以控制為目的的嘗試,應用于氫弧燈的電極輸送機構中。這被認為是最初的步進電機。二十世紀初,在電話自動交換機中廣泛使用了步進電機。由于西方資本主義列強爭奪殖民地,步進電機在缺乏交流電源的船舶和飛機等獨立系統中得到了廣泛的使用。二十世紀五十年代后期晶體管的發明也逐漸應用在步進電機上,對于數字化的控制變得更為容易。到了八十年代后,由于廉價的微型計算機以多功能的姿態出現,步進電機的控制方式更加靈活多樣。 [2] 步進電機相對于其它控制用途電機的最大區別是,它接收數字控制信號(電脈沖信號)并轉化成與之相對應的角位移或直線位移,它本身就是一個完成數字模式轉化的執行元件。而且它可開環位置控制,輸入一個脈沖信號就得到一個規定的位置增量,這樣的所謂增量位置控制系統與傳統的直流控制系統相比,其成本明顯減低,幾乎不必進行系統調整。步進電機的角位移量與輸入的脈沖個數嚴格成正比,而且在時間上與脈沖同步。因而只要控制脈沖的數量、頻率和電機繞組的相序,即可獲得所需的轉角、速度和方向。 [2] 我國的步進電機在二十世紀七十年代初開始起步,七十年代中期至八十年代中期為成品發展階段,新品種和高性能電機不斷開發,目前,隨著科學技術的發展,特別是永磁材料、半導體技術、計算機技術的發展,使步進電機在眾多領域得到了廣泛應用。 [2] 3、控制策略 PID 控制 PID 控制作為一種簡單而實用的控制方法 , 在步進電機驅動中獲得了廣泛的應用。它根據給定值 r( t) 與實際輸出值 c(t) 構成控制偏差 e( t) , 將偏差的比例 、積分和微分通過線性組合構成控制量 ,對被控對象進行控制 。文獻將集成位置傳感器用于二相混合式步進電機中 ,以位置檢測器和矢量控制為基礎 ,設計出了一個可自動調節的 PI 速度控制器 ,此控制器在變工況的條件下能提供令人滿意的瞬態特性 。文獻根據步進電機的數學模型 ,設計了步進電機的 PID 控制系統 ,采用 PID 控制算法得到控制量 ,從而控制電機向指定位置運動 。最后 ,通過仿真驗證了該控制具有較好的動態響應特性 。采用 PID 控制器具有結構簡單 、魯棒性強 、可靠性高等優點 ,但是它無法有效應對系統中的不確定信息 。 [3] 目前 , PID 控制更多的是與其他控制策略相結合 , 形成帶有智能的新型復合控制 。這種智能復合型控制具有自學習 、自適應 、自組織的能力 ,能夠自動辨識被控過程參數 , 自動整定控制參數 , 適應被控過程參數的變化 ,同時又具有常規 PID 控制器的特點。 [3] 自適應控制 自適應控制是在 20 世紀 50 年代發展起來的自動控制領域的一個分支 。它是隨著控制對象的復雜化 ,當動態特性不可知或發生不可預測的變化時 ,為得到高性能的控制器而產生的 。其主要優點是容易實現和自適應速度快 ,能有效地克服電機模型參數的緩慢變化所引起的影響 ,是輸出信號跟蹤參考信號 。文獻研究者根據步進電機的線性或近似線性模型推導出了全局穩定的自適應控制算法 , 這些控制算法都嚴重依賴于電機模型參數 。文獻將閉環反饋控制與自適應控制結合來檢測轉子的位置和速度 , 通過反饋和自適應處理 ,按照優化的升降運行曲線 , 自動地發出驅動的脈沖串 ,提高了電機的拖動力矩特性 ,同時使電機獲得更精確的位置控制和較高較平穩的轉速 。 [3] 目前 ,很多學者將自適應控制與其他控制方法相結合 ,以解決單純自適應控制的不足。文獻設計的魯棒自適應低速伺服控制器 ,確保了轉動脈矩的最大化補償及伺服系統低速高精度的跟蹤控制性能 。文獻實現的自適應模糊 PID 控制器可以根據輸入誤差和誤差變化率的變化 ,通過模糊推理在線調整 PID參數 ,實現對步進電機的自適應控制 ,,從而有效地提高系統的響應時間 、計算精度和抗干擾性 。 [3] 矢量控制 矢量控制是現代電機高性能控制的理論基礎 ,可以改善電機的轉矩控制性能 。它通過磁場定向將定子電流分為勵磁分量和轉矩分量分別加以控制 ,從而獲得良好的解耦特性 ,因此 ,矢量控制既需要控制定子電流的幅值 ,又需要控制電流的相位 。由于步進電機不僅存在主電磁轉矩 ,還有由于雙凸結構產生的磁阻轉矩 ,且內部磁場結構復雜 , 非線性較一般電機嚴重得多 , 所以它的矢量控制也較為復雜 。推導出了二相混合式步進電機 d-q 軸數學模型 ,以轉子永磁磁鏈為定向坐標系 ,令直軸電流 id =0 ,電動機電磁轉矩與 iq 成正比 , 用PC 機實現了矢量控制系統 。系統中使用傳感器檢測電機的繞組電流和轉自位置 ,用 PWM 方式控制電機繞組電流 。文推導出基于磁網絡的二相混合式步進電機模型 , 給出了其矢量控制位置伺服系統的結構 ,采用神經網絡模型參考自適應控制策略對系統中的不確定因素進行實時補償 ,通過最大轉矩/電流矢量控制實現電機的高效控制 。 [3] 智能控制的應用 智能控制不依賴或不完全依賴控制對象的數學模型 ,只按實際效果進行控制 ,在控制中有能力考慮系統的不確定性和精確性 , 突破了傳統控制必須基于數學模型的框架 。目前 , 智能控制在步進電機系統中應用較為成熟的是模糊邏輯控制 、神經網絡和智能控制的集成 。 [3] 模糊控制 模糊控制就是在被控制對象的模糊模型的基礎上 ,運用模糊控制器的近似推理等手段 ,實現系統控制的方法 。作為一種直接模擬人類思維結果的控制方式 ,模糊控制已廣泛應用于工業控制領域 。與常規控制相比 ,模糊控制無須精確的數學模型 , 具有較強的魯棒性 、自適應性 , 因此適用于非線性 、時變 、時滯系統的控制 。給出了模糊控制在二相混合式步進電機速度控制中應用實例 。系統為超前角控制 ,設計無需數學模型 ,速度響應時間短 。 [3] 神經網絡控制 神經網絡是利用大量的神經元按一定的拓撲結構和學習調整的方法 。它可以充分逼近任意復雜的非線性系統,能夠學習和自適應未知或不確定的系統 ,具有很強的魯棒性和容錯性,因而在步進電機系統中得到了廣泛的應用 。將神經網絡用于實現步進電機最佳細分電流 ,在學習中使用 Bayes 正則化算法 ,使用權值調整技術避免多層前向神經網絡陷入局部極小點 ,有效解決了等步距角細分問題 。

              責任編輯:

              標簽: 步進電機

              相關推薦:

              精彩放送:

              新聞聚焦
              Top 中文字幕在线观看亚洲日韩